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Accelerated scalar dissipation in a vortex
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A scalar patch forms spiral structure when it wraps around an isolated vortex. It is
shown that this wind-up process leads to accelerated diffusion during a time range
TS < t < TD . The lower limit TS is the time needed to create a well-defined spiral, and
the upper limit TD is the diffusive time scale of the scalar field θ in the vortex. Whereas
the scaling TD ∼ Pe1/3 is independent of the particular spiral topology, the accelerated
decay of the scalar variance θ2(t) for earlier times is directly linked to the space-filling
property of the spiral and is found to scale as θ2(0) − θ2(t) ∼ (Pe−1/3t)3(1−D′K ). D′K is
the Kolmogorov capacity of the spiral; it is defined in the range 1/2 < D′K < 1 and
it is the most suitable measure of the spiral’s space-filling property.

1. Introduction
A pivotal assumption in turbulence theory is the asymptotic independence of

dissipation rates from diffusive properties at the molecular level. The rate of kinetic
energy dissipation ε is usually assumed to be independent of the kinematic viscosity
ν in the limit where ν → 0. Likewise, the rate of scalar dissipation χ is often assumed
to be independent of molecular diffusivity κ in the limit where κ→ 0. Kolmogorov’s
dimensional analysis is indeed based on the assumption that ∂ε/∂ν = 0 as ν → 0
and leads to E(k) ∼ k−5/3 where E(k) is the energy spectrum of a homogeneous
and isotropic turbulent velocity field. A similar dimensional analysis that is based on
∂χ/∂κ = 0 as κ → 0 and ∂χ/∂ν = 0 as ν → 0 leads to Γ (k) ∼ k−5/3 where Γ (k) is
the power spectrum of a homogeneous and isotropic turbulent scalar field (Batchelor
1959). Hunt & Vassilicos (1991) pointed out that there must be singularities in a field
with a k−p power spectrum and that if p < 2 these singularities are either isolated cusp
singularities, isolated oscillating singularities or non-isolated singularities (see figure
1a). More precisely they must be ‘near singularities’, that is, they exhibit the asymptotic
structure of a singularity outside a limited region where viscosity or diffusivity smooths
out the field. In this paper we study the effect on scalar dissipation of a scalar isolated
oscillating singularity generated by the winding action of a two-dimensional vortex.
Let us now motivate this study.

A scalar field θ(x, t) subjected to the sole action of molecular diffusion evolves
according to

∂

∂t
θ = κ∇2θ. (1.1)

An initial scalar field θ(x, t = 0) with a k−p high-wavenumber power spectrum
decays faster with time for smaller values of p (Vassilicos 1995). For example, a
one-dimensional initial on–off scalar function θ(x, 0) with a k−p high-wavenumber
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Figure 1. Classification of possible singular flow topology in schematic one-dimensional distribu-
tions. (a) A continuous field u(x) can have (i) isolated cusps, (ii) isolated oscillating singularities, or
(iii) non-isolated singularities as in fractal fields. (b) A scalar on–off field θ(x) can have (i) isolated
accumulations of discontinuities which are the on–off equivalent of isolated oscillating singularities,
or (ii) non-isolated fractal accumulations of discontinuities.

power spectrum and 1 < p 6 2 decays in such a way that

θ2(0)− θ2(t)

θ2(0)
∼
(

2κt

L2

)(p−1)/2

+ O

(
κt

L2

)
(1.2)

for short times κt/L2 � 1, where L is an outer length scale of the initial field and

θ2(t) = (1/L)
∫

1
2
|θ(x, t)|2dx.

As discussed by Hunt & Vassilicos (1991), isolated discontinuities have a k−2

high-wavenumber power spectrum; but on–off functions θ(x, 0) with a k−p high-
wavenumber spectrum where p < 2 must have singularities that are worse than
isolated discontinuities. These singularities can be either isolated accumulating dis-
continuities or non-isolated discontinuities (see figure 1b). In either case the set of
points of discontinuity can have a well-defined Kolmogorov capacity (or fractal di-
mension) D′K in which case p = 2−D′K (Vassilicos & Hunt 1991) and the anomalous
decay (1.2) becomes

θ2(0)− θ2(t)

θ2(0)
∼
(

2κt

L2

)(1−D′K )/2

+ O

(
κt

L2

)
, (1.3)

valid both for spiral-like (isolated accumulation) and for fractal (non-isolated) sharp
gradients or discontinuities. The anomalous decay also implies that the scalar dissi-
pation rate χ = −(d/dt)θ2(t) ∼ κ(1−D′K )/2t−(1+D′K )/2 at leading order. In the limit where
κ → 0 and if D′K → 1, i.e. if the spiral-like or fractal set of high gradients is space
filling, the dissipation rate is then asymptotically independent of κ.

A relatively simple fluid mechanical situation where an isolated accumulating, in
fact spiral, singularity is formed is when a two-dimensional vortex wraps a scalar field
around itself. However, in spite of the relative simplicity of such a fluid mechanical
configuration, its study goes beyond the sole molecular decay of singular geometry and
takes into account the dynamic interplay of diffusion and evolving spiral accumulation
because the accumulation is continuously created by advection. In this paper, we seek
solutions of

∂

∂t
θ + u · ∇θ = κ∇2θ (1.4)
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with an appropriate velocity field u that can generate a spiral accumulation in the
passive scalar field θ.

In §2 we consider a steady vortex with azimuthal velocity component uφ(r) = rΩ(r)
and vanishing radial and axial velocity components. Hence the evolution of the
two-dimensional advected and diffusing scalar field is governed by

∂

∂t
θ + Ω(r)

∂

∂φ
θ = κ∇2θ (1.5)

in the azimuthal plane (r, φ). We choose an angular velocity Ω(r) ∼ r−s.
The decay of a scalar field in such a vortex is accelerated by two different effects.

One is well known and is caused by the shear in the differential rotation which
enhances scalar gradients locally and thereby accelerates their diffusion. This effect
determines that the diffusive time scale TD over which all scalar gradients have
decayed scales with κ−1/3 rather than κ−1 (Moffatt & Kamkar 1983; Rhines & Young
1983). However, the studies of Moffatt & Kamkar (1983) and Rhines & Young
(1983) do not consider the effect of the scalar spiral geometry that is generated by
the differential rotation of the vortex. This is a global effect which, as we show in
§2, operates over time scales smaller than TD and accelerates scalar dissipation in a
way that is largely determined by the Kolmogorov capacity D′K of the scalar spiral
structure. The Kolmogorov capacity is a measure of the space-filling property of the
spiral and is a function of the power s.

A vortical velocity field with an angular velocity Ω(r) ∼ r−s in a finite range of
radii r can (at least in principle) be realized in the laboratory between two rotating
porous circular walls where the fluid is injected in through the outer wall and sucked
out through the inner wall. This flow is an analytical solution of the two-dimensional
Navier–Stokes equations and in §3 we show that the analysis of §2 can be extended
to this flow.

In §4 we confirm numerically the asymptotic analysis presented in the preceeding
sections and we demonstrate the advantage of using D′K as a measure of its space-
filling property. Finally, we conclude in §5.

2. Passive scalar in a vortex
We now study the decay of a passive tracer θ in a steady vortex. The vortex

is assumed to have an azimuthal component uφ(r) = rΩ(r) = R0Ω0(r/R0)
1−s and

vanishing radial and axial velocity components. Note that this velocity field is an
incompressible solution of the Euler equation for any value of s. We choose s > 1 to
ensure that uφ(r) decreases with increasing r.

The initial scalar field θ0 = θ(x, t = 0) is on–off and defined by a regular interface
between θ0 = 1 and θ0 = 0 with minimal distance r0 and maximal distance R0 from
the rotation axis (see figure 2). By ‘regular’ we mean an interface without structure
on scales much smaller than R0. As time proceeds, the patch winds around the
vortex, builds up spiral structure and decays because of molecular diffusion. The
characteristic time Ω−1

0 is the inverse angular velocity of the vortex at R0. This defines
a Péclet number Pe = Ω0R

2
0κ
−1.

With the exception of §2.3.1 and (3.1)–(3.3), from now on we use the following
non-dimensional notation throughout this paper:

R−1
0 r → r, Ω0t→ t, Ω−1

0 Ω(r)→ Ω(r), R2
0∇2 → ∇2.
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Figure 2. A scalar patch in the vicinity of a vortex which is placed at x = 0.

In this notation (1.5) becomes
∂

∂t
θ + Ω(r)

∂

∂φ
θ =

1

Pe
∇2θ (2.1)

with Ω(r) = r−s, and r0 represents r0/R0 whilst R0 = 1.
The aim of the asymptotic analysis in this section is to characterize the decay of

the scalar by calculating
∆Eθ(t) = θ2(0)− θ2(t) (2.2)

where the scalar variance θ2(t) is defined by

θ2(t) =

∫
|θ(r, φ, t)|2rdrdφ. (2.3)

2.1. Asymptotic analysis

The analysis is based on the observation that if κ = 0, θ(r, φ, t) is determined by
the initial condition θ0(r, φ) and Ω(r) in a simple way. Indeed, the inviscid solution
is given by a transformation of the initial conditions from Eulerian to Lagrangian
coordinates. Generalizing this transformation to the diffusive case enables us to find
an asymptotic solution of (2.1) which is then used to calculate ∆Eθ(t).

In the case of vanishing diffusivity, (2.1) simplifies to

∂

∂t
θ + Ω(r)

∂

∂φ
θ = 0, (2.4)

and θ(r, φ, t) = Θ(r, φ − Ω(r)t, t) is a solution of (2.4) provided that (∂/∂t)Θ = 0.
Hence, θ(r, φ, t) = Θ(r, φ − Ω(r)t, 0) = θ0(r, φ − Ω(r)t) and the solution θ(r, φ, t) is
therefore given by

θ(r, φ, t) = θ0(r, φ− Ω(r)t). (2.5)

Using the 2π-periodicity in φ, θ0(r, φ) =
∑

n fn(r) exp[inφ] which implies that

θ(r, φ, t) =
∑
n

fn(r) exp[in(φ− Ω(r)t)], (2.6)

where the fn(r) are Fourier coefficients of the initial field θ0. For an initial field
defined by a regular interface as in figure 2, fn(r) varies as 1/n because of the isolated
discontinuity at the boundary of the patch. For example, the initial condition in figure
6(a) is given exactly by

fn(r) = i/(2πn) (exp(−inπ)− 1)H(1− r)H(r − r0), n 6= 0

f0(r) = 1
2
H(1− r)H(r − r0)

}
(2.7)

where H denotes the Heaviside function.
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Figure 3. Schematic evolution of the scalar patch in the vicinity of a strong vortex, with Pe � 1.
(a) The initial blob. (b) Spiral structure starts to build up and (c) expands throughout the patch. (d)
The accumulation of gradients eventually leads to fast scalar decay which grows from the centre of
the vortex with ρ in this figure being the radius over which the scalar has diffused.

In the case of finite diffusivity, we seek a solution of (2.1) in the form

θ(r, φ, t) =
∑
n

fn(r, t) exp[in(φ− Ω(r)t)], (2.8)

where the Fourier coefficients fn(r, t) are time-dependent and the initial condition is
fully specified by fn(r, 0). Introducing (2.8) into (2.1), we find that the evolution of
fn(r, t) is governed by

∂

∂t
fn =

1

Pe


∂2

∂r2
fn +

(
−2intΩ′ +

1

r

)
∂

∂r
fn −

n2Ω′2t2︸ ︷︷ ︸
(i)

+inΩ′′t+ in
Ω′

r
t+

n2

r2︸︷︷︸
(ii)

 fn


(2.9)

where the prime denotes a derivative with respect to r.
Different time regimes in the evolution of the scalar patch can be readily identified.

First, if t < Ω(r0)
−1 = rs0, the vortex has not yet affected the patch and no spiral

structure has developed (figure 3a). Secondly, if rs0 < t < Ω(1)−1 = 1, two distinct
regions exist, the inner affected part of the patch, r < t1/s, and the unaffected outer
part, r > t1/s (figure 3b). Finally, if t > 1, the entire scalar field has developed
spiral structure, provided, of course, that the Péclet number is large enough for the
molecular diffusion not to have smoothed out that spiral structure (figure 3c, d).
We mostly concentrate on times t > 1 because the main interest of this study is
focused on anomalous decay during times when the patch becomes independent of
the initial structure, that is, times when the entire patch is wrapped around the vortex.
However, we will also briefly discuss earlier times, rs0 < t < 1, at the end of this
section.

The spiral near-singularity is taken into account by the transformation from φ to
φ − Ω(r)t in (2.8) and it is reasonable to assume that the coefficients fn are regular
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for all r and t > 0. Hence, if t � 1, and for all r 6 1 and |n| > 1, the dominant
contribution in the right-hand side of (2.9) comes from the term labelled (i), and (2.9)
reduces to

dfn
dt

= −Pe−1n2Ω′2t2fn (2.10)

at leading order. Note that we have made use of the assumption of regularity in
fn(r, t) to obtain (2.10). The general solution to (2.10) is

fn(r, t) = fn(r, 0) exp
[
− 1

3
n2Ω′2Pe−1t3

]
. (2.11)

From(2.3),(2.8) and (2.11) it follows that the scalar variance θ2(t) can be computed
from the amplitudes fn as follows:

θ2(t) =
∑
n

∫ 1

r0

|fn(r, t)|2 r dr

=
∑
n

∫ 1

r0

|fn(r, 0)|2 exp
[
− 2

3
n2Ω′2Pe−1t3

]
r dr. (2.12)

Because fn(r, 0) is independent of r in the range r0 < r < 1 we set fn = fn(r, 0). We
define a critical radius ρ such that 2

3
n2Ω′2(ρ)Pe−1t3 = 1, which implies

ρ =
[

2
3
n2s2Pe−1t3

]1/(2(s+1))
. (2.13)

For r � ρ we can use the approximation exp
[

2
3
n2Ω′2(r)Pe−1t3

]
≈ 1, and if r0 < ρ� 1

the integrals in (2.12) are therefore well approximated by∫ 1

r0

|fn(r, 0)|2 exp[− 2
3
n2Ω′2Pe−1t3] r dr

≈ |fn|2
∫ ρ

r0

exp[− 2
3
n2Ω′2Pe−1t3] r dr + |fn|2 1

2
(1− ρ2). (2.14)

The critical radius ρ can be thought of as a diffusive length scale over which the
harmonics in n have diffused. Therefore, the assumption that ρ� 1 means that spiral
structure exists in the range ρ < r < 1, as for example shown in figure 3(d). The
condition r0 < ρ� 1 requires (omitting constants of order unity) that

r
2(s+1)/3
0

[
(ns)−2Pe

]1/3
< t�

[
(ns)−2Pe

]
.1/3 (2.15)

It is sufficient that r
2(s+1)/3
0 (s−2Pe)1/3 < t for r0 to be smaller than ρ for all values of

n and it is necessary that t� (s−2Pe)1/3 for ρ to be much smaller than 1 for at least
some values of n. Such values of n are bounded, |n| < N where N is determined by
ρ(N) = 1 and therefore N = s−1[Pe t−3]1/2. It follows that the present analysis is valid
in the range of times

max
[
1, r

2(s+1)/3
0

(
s−2Pe

)1/3
]
� t�

(
s−2Pe

)1/3
, (2.16)

a range that can only exist if Pe � s2; s is a parameter of the local shear of the
vortex and is usually of order 1, for example s = 2 for a point vortex. That is, we
consider very large Péclet numbers, Pe � 1. In the time range (2.16) the decay of the
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scalar variance is well approximated by

θ2(0)− θ2(t) ' 1

2

∑
|n|<N

|fn|2
(
ρ2 −

∫ ρ

r0

exp
[
− 2

3
n2Ω′2Pe−1t3

]
r dr

)

+
1

2

∑
|n|>N

|fn|2
(

1−
∫ 1

r0

exp
[
− 2

3
n2Ω′2Pe−1t3

]
r dr

)
. (2.17)

As mentioned before, any initial on–off scalar patch defined by a regular interface
is of the form fn ∼ n−1. Thus, the series in (2.17) are of the form

∑
n−2s/(s+1) and∑

n−2. They converge for all s > 1, a condition which was imposed earlier to ensure
an accumulating scalar pattern at the centre.

Truncating all the terms with |n| > N in the series (2.17) because these terms decay
exponentially, noting that ρ2 �

∫ ρ
r0

exp
[
− 2

3
n2Ω′2Pe−1t3

]
r dr for |n| < N and omitting

constants of order unity (in particular the series in n), we obtain the main scaling
result of this section

θ2(0)− θ2(t) ∼
(

Pe−1/3t
)3/(s+1)

, (2.18)

valid in the time range (2.16). The spiral structure of the scalar field is conveniently
characterized by a Kolmogorov capacity D′K , which as we show numerically in §4 is
independent of time in the spiral time range where it is related to the vortex scaling
exponent s by D′K = s/(s+ 1) (see §4). The Kolmogorov capacity is a measure of the
spiral’s accumulation rate; D′K is close to 1 if this accumulation rate is very slow and
the spiral is close to space-filling and D′K is significantly smaller than 1 for faster
accumulation rates and less-space-filling spirals. Here 1/2 < D′K < 1 because s > 1,
and the result (2.18) can be recast in the form

θ2(0)− θ2(t) ∼
(

Pe−1/3t
)3(1−D′K )

. (2.19)

The advantage of casting this result in terms of D′K rather than s is that D′K has a
direct visual interpretation in terms of the spiral structure of the scalar field, whereas
s is related to the underlying velocity field. In particular, D′K can be more easily and
directly measured than s and we also find in §4 that D′K can be measured accurately
even when the resolution is not sufficient to reveal the decay law (2.19).

2.2. The spiral time range

The result (2.18)–(2.19) is valid in the time range (2.16) which exists in the limit
Pe � 1. We call this time range the ‘spiral time range’ and write it as follows:

TS � t� TD (2.20)

where

TS = max[1, r
2/(3−3D′K )
0 Pe1/3], TD = Pe1/3. (2.21)

omitting the prefactors s−2/3 because s is usually of order 1, and assuming that
D′K = s/(s+1) independently of time throughout the spiral time range. The numerical
results of §4 support this assumption.

The upper time limit TD is the diffusive time scale of the patch. The scaling
TD ∼ Pe1/3 (rather than TD ∼ Pe as in the case of molecular diffusion without a
shear-generating velocity field) has been derived in earlier studies (Moffatt & Kamkar
1983; Rhines & Young 1983). This scaling TD ∼ Pe1/3 reflects the accelerating effect of
the differential rotation’s local shear and is independent of the spiral’s accumulation
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rate, i.e. of D′K . For time scales much smaller than TD , the accumulating structure of
scalar gradients has its own accelerating effect on scalar diffusion, and it is reflected
in the scaling law (2.19). Thus, we may summarize the main result of this section as
follows: the presence of local shear in the vortex determines the diffusive time scaling
TD ∼ Pe1/3; the presence of a spiral accumulation of scalar gradients is a global effect
that manifests itself in the anomalous decay (2.19) in the spiral time range.

The lower time limit TS of this time range is always larger than 1 which ensures
that the vortex has had the time to fully wrap the scalar patch around itself. TS ∼ 1

when r0 � Pe(D′K−1)/2, but when Pe(D′K−1)/2 � r0 < 1 then TS ∼ r
2/(3−3D′K )
0 Pe1/3 and

the spiral time range is preceeded by a different range, 1� t� TS , where the scalar
variance decays differently. Whereas (2.19) remains valid in the spiral range, in the
range 1� t� TS the approximation (2.14) must be replaced by∫ 1

r0

|fn(r, 0)|2 exp[− 2
3
n2Ω′2Pe−1t3] r dr ≈ |fn|2 1

2
(1− r2

0), (2.22)

because in this range ρ < r0, and a similar analysis leads to

θ2(0)− θ2(t) '
(

Pe−1/3t
)3/2

. (2.23)

This behaviour can be observed before the spiral accumulation’s global effect. If
these early times 1 � t � TS exist the patch is too narrow to form a well-defined
accumulating spiral pattern, and the diffusion is accelerated by the local shear of the
vortex only.

Finally, we comment on the limit t � 1 which has been imposed so far. Because

r
2/(3−3D′K )
0 Pe1/3 → 0 as r0 → 0, we might expect anomalous behaviour for times where

only part of the patch is sheared out into spiral structure, that is times rs0 < t < 1.
Indeed, it is shown in the Appendix that the decay of the inner part of the patch,
r0 < r < t1/s, is again dominated by term (i) in (2.9). The decay of the outer part,
t1/s < r < 1, which is not sheared by the vortex, is dominated by term (ii). The overall
decay can be written as follows:

θ2(0)− θ2(t) '
(

Pe−1/3t
)3(1−D′K )

+
(
Pe−1t

)1/2
(2.24)

where the first term of the right-hand side is the contribution of the inner part r < t1/s

whilst the second term is the contribution of the outer part r > t1/s. Note that the
term (Pe−1t)1/2 can be neglected even for times t < 1 if 1/2 < D′K < 5/6.

2.3. The accelerating effect of the spiral on the scalar decay rate

In the spiral time range the enhancement of diffusion and scalar dissipation is due
to the presence of a spiral near-singularity in the scalar field. This effect of the spiral
near-singularity is the same as the effect that a fractal field has on its dissipation. It
is a global effect originating in the space-filling properties of spirals and fractals and
must be distinguished from the effect that shear can have on dissipation which is a
local effect because shear is a local gradient.

2.3.1. Anomalous diffusion of fractal or spiral structures

In the simpler case of an initially spiral or fractal on–off field evolving under the
action of molecular diffusion alone (the case of (1.1)–(1.3)), Vassilicos (1995) brings
out the effect of the space-filling property on the dissipation by considering the
diffusive length scale δ(t) ≡ L(t) −L(0) where L(t) is the correlation length scale.
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Unlike the rest of §2, the notation for lengths, times and wavenumbers is dimensional
in this subsection. The diffusive length scale δ(t) is a measure of the distance over
which the effects of molecular diffusion are appreciable on the structure at time t. For
one-dimensional fields θ(x, t)

L(t) =

∫ ∞
0

k−1Γ (k, t)

θ2(t)
dk (2.25)

where Γ (k, t) is the time-dependent Fourier power spectrum of θ(x, t). For fields θ(x, t)
of higher dimensionality, e.g. two-dimensional fields as in most of this paper, (2.25)
remains exact under the assumption of isotropy for θ(x, t). The diffusive length scale
of one-dimensional fields evolving according to (1.1) can be estimated for short times
κt/L2 � 1,

δ(t) ∼ (κt)1/2
(
(κt)1/2

)−D′K
, (2.26)

where D′K is the Kolmogorov capacity of the points of discontinuity of the initial
on–off scalar field θ(x, 0). Γ (k, t) ∼ k−2+D′K is used to obtain (2.26), see Vassilicos
(1995).

The Kolmogorov capacity D′K is defined by the number of boxes N of length l
needed to cover all the points of the set if N(l) ∼ l−D′K . This definition implies

δ(t) ∼ (κt)1/2 N
(
(κt)1/2

)
(2.27)

for the early times of decay which means that the diffusive length scale δ(t) is
proportional to the total length of the fractal covering by segments of size (κt)1/2.
The closer D′K is to 1, the more space filling the covering by segments of size (κt)1/2,
the larger the diffusive length scale δ(t), and therefore the faster the early decay by
diffusive attrition.

Similar arguments can be reproduced for the artificial situation where a two-dim-
ensional spiral initially on–off scalar field decays according to (1.1). In this case the
Fourier power spectrum is given by Γ (k, t) ∼ k−3+2D′K and thus

δ(t) ∼
[
(κt)1/2

(
(κt)1/2

)−D′K]2

(2.28)

where D′K is now the Kolmogorov capacity of the intersection of the spiral with a
straight line. By definition of the Kolmogorov capacity,

δ(t) ∼
[
(κt)1/2 N

(
(κt)1/2

)]2
, (2.29)

and comparison with (2.27) suggests that the power 2 on the right-hand side of (2.29)
is nothing but the Euclidean dimensionality of the embedding space. Again, the global
effect originates in the space-filling property of the spiral and is manifest in (2.29).
The diffusive length scale is larger for larger values of D′K , i.e. for more-space-filling
spirals, which reflects a faster dissipation rate.

It should be noted that the diffusive length scale δ(t) is not the inner cutoff length
scale η(t) of the fractal or spiral field’s power spectrum. The global effect of the spiral
or fractal structure of gradients originates in the slope of the self-similar Fourier
power spectrum of such structures. In the case of one-dimensional on–off fields the
power spectrum scales as k−2+D′K in the range L−1 � k � η(t)−1. Hence we can
estimate the effect of the spiral or fractal space-filling property on the variance θ2(t)
as follows:

θ2(t) ∼
∫ η(t)−1

L−1

k−2+D′Kdk. (2.30)
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Figure 4. (a) Spectral picture of a diffusing fractal or spiral structure; the dashed line indicates
the exponential decay at high wavenumbers where diffusion acts. (b) In the case of a continuously
acting vortex, diffusion not only removes high wavenumbers, but the entire spectrum is shifted
towards higher wavenumbers as time advances.

At t = 0, η = 0, and therefore

θ2(0)− θ2(t) ∼
∫ ∞
η(t)−1

k−2+D′Kdk (2.31)

which leads to the right conclusion θ2(0) − θ2(t) ∼ (κt)(1−D′K )/2 in the limit where
η(t)� L only if η(t) ∼ (κt)1/2. Hence the diffusive length scale δ(t) is larger than the
inner cutoff length scale η(t), and in fact (2.27) can be recast as

δ(t) ∼ η(t) N[η(t)]. (2.32)

2.3.2. Passive scalar in a vortex

To bring out the effect of the space-filling property on dissipation when the
vortex continously creates spiral structure as time advances, we need to consider
an appropriately defined diffusive length scale δ(t). To calculate the integral length
scale L(t) using (2.25) we need to know the time-dependent scalar power spectrum
Γ (k, t). Gilbert (1988) discusses the self-similar power spectra of a patch wrapping
around a vortex in detail. He identifies the spiral range of length scales in which
Γ (k) ∼ k−3+2D′K as before. However, the essential difference with an initially spiral
field that decays under the sole action of molecular diffusion is that the vortex
continuously creates spiral structure as time advances. Hence, the spiral range of
length scales is continuously shifted towards smaller scales (i.e. higher wavenumbers),
see figure 4, and Γ (k, t) ∼ t2(1−D′K )k−3+2D′K in the range of scales k > t with t > 1.
Non-dimensional wavenumbers are defined by R0k → k.

The correlation length scale L(t) defined by (2.25) becomes

L(t) ∼
∫ ∞
t

k−1 t2(1−D′K )k−3+2D′K

1−
(

Pe−1/3t
)3(1−D′K )

dk

∼ t−1

[
1 +

(
Pe−1/3t

)3(1−D′K )
]

(2.33)

for short times t < Pe1/3. L(t) is now determined by two competing effects: the
continued action of the vortex decorrelates the scalar field by enhancing gradients,
L(t) ∼ t−1, whereas diffusion smooths out gradients and thus correlates the scalar
field,L(t) ∼ 1+(Pe−1/3t)3(1−D′K ). To isolate the diffusive effect we redefine the diffusive
length scale

δ(t) ≡ L(t)

Li(t)
− L(1)

Li(1)
(2.34)
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where Li is the inviscid correlation length scale with Li ∼ t−1 because θ2(t) = const
if κ = 0. Thus the diffusive length scale increases as

δ(t) ∼
(

Pe−1/3t
)3(1−D′K )

(2.35)

which can be recast as

δ(t) ∼
[
(Pe−1t3)1/2 N

(
(Pe−1t3)1/2

)]2
(2.36)

analogously to (2.29). The diffusive length scale is proportional to the square of the
total length of the spiral covering by N segments of size (Pe−1t3)1/2; (Pe−1t3)1/2 is
the length scale characterizing diffusion locally for single sharp scalar gradients in
a shear-dominated flow and has been derived before in the studies of Moffatt &
Kamkar (1983) and Rhines & Young (1983). This length scale in real space has to
be contrasted with the inner cutoff scale η(t)−1 of the spiral field’s power spectrum in
wavenumber space. If we approximate the decay of the scalar field using the field’s
power spectrum analogously to (2.31) by

θ2(1)− θ2(t) ∼
∫ ∞
η(t)−1

t2−2D′K k−3+2D′Kdk, (2.37)

we recover the right conclusion (2.19) only if η(t) ∼ (Pe−1t)1/2.
The local acceleration of diffusion by the shear is reflected in (Pe−1t3)1/2 >

(Pe−1t)1/2. On the other hand, the global acceleration of diffusion is reflected in
the diffusive length-scale δ(t) which is a measure of the spatial extent over which
diffusion has erased the spiral structure. It is the space-filling property of the spiral
gradients that leads to δ(t) > (Pe−1t3)1/2 and therefore to the accelerated diffusion
(2.19) which determines the decay of the entire patch.

Figure 6 in §4 clarifies the accelerating effect of the spiral’s space-filling property
on diffusion. Whereas the gradients of the outer arms (which diffuse over the shear-
dominated scale (Pe−1t3)1/2) are still sharply defined in figure 6(c), the inner gradients
(where the accumulation of gradients determines the diffusive length scale) are already
smoothed out. We find numerically in §4 that the spatial extent of this smoothed-out
core has the same time-dependence as the critical radius ρ, and using (2.13) with
D′K = s/(s+ 1) it turns out that

δ(t) ∼ ρ2(t). (2.38)

3. Passive scalar between two porous rotating cylinders
In the previous section we assumed Ω(r) ∼ r−s. This model flow could form the

basis of an oversimplified picture of the flow in the vicinity of strong vortices in
two-dimensional turbulence, and the locally two-dimensional flows around vortex
tubes in three-dimensional turbulence. Trailing vortices behind airfoils have also been
proposed to have such power-law behaviour (Saffman 1992).

However, exact solutions of the two-dimensional Navier–Stokes equations with
Ω(r) ∼ r−s for various values of s are known for the flow between two rotating
porous cylinders (see, for example, Lugt 1983). Fluid is injected in through the outer
wall and sucked out through the inner wall; the suction velocity V is defined at the
inner radius R1. The radii and rotation rates of the cylinders are R1, R2 and Ω1, Ω2,
respectively. Refer to figure 5 for a sketch of the flow. The axial and radial velocity
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Figure 5. A scalar patch in the flow field of two rotating, porous cylinders.

components are (in dimensional units)

ur = −VR1

r
, uφ = rΩ(r), (3.1)

where the angular velocity Ω(r) is found from the uφ momentum equation and can
be written as

Ω(r) = Ω1

[
σRe − λ
σRe − σ2

(
r

R1

)−2

+
λ− σ2

σRe − σ2

(
r

R1

)−Re]
(3.2)

for Re 6= 2†, where the Reynolds number Re and the parameters σ and λ are given
by

σ =
R1

R2

, λ =
Ω2

Ω1

, Re =
R1V

ν
, (3.3)

where ν is the kinematic viscosity of the fluid. Interestingly, for a suitable choice of
σ, λ we recover Ω(r) ∼ r−s with s = Re. We note that (3.2) is valid throughout the
flow, and in particular at the cylinder walls.

The evolution of a passive scalar in such a velocity field is governed by (1.4) as
before.

For consistent notation with §2 (with scaling parameters Ω0, R0) we non-dimension-
alize the angular velocity (3.2) and obtain

Ω(r) = β

[
σRe − λ
σRe − σ2

( r
α

)−2

+
λ− σ2

σRe − σ2

( r
α

)−Re]
, (3.4)

with

α =
R1

R0

, β =
Ω1

Ω0

. (3.5)

In what follows, we assume a suitable choice of parameters such that Ω(r) ∼ r−Re.
The evolution equation of a scalar field (1.4) can now be written as

∂

∂t
θ − m

r

∂

∂r
θ + Ω(r)

∂

∂φ
θ =

1

Pe
∇2θ (3.6)

with

m =
Re Pr

αPe
, Pr =

ν

κ
. (3.7)

† Ω(r) = Ω1

[
1

(r/R1)2
+

1− λ/σ2

ln σ

ln(r/R1)

(r/R1)2

]
for Re = 2.
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As previously, the scalar is thought of as an initially smooth patch placed between the
two cylindrical boundaries at minimal and maximal distances r0 and 1 (see figure 5).
It develops spiral structure because of the differential rotation between the cylinders
and is slowly advected towards the centre because of the suction velocity. We consider
here only times where the scalar has not reached the inner cylinder, t < (r2

0 − α2)/(2m).
In the rest of this section we revise the analysis of §2.1.

We seek a solution along the coordinates of ideal particles

θ(r, φ, t) = Θ(ξ, η, t) (3.8)

with the Lagrangian coordinates

ξ = (r2 + 2mt)1/2, η = φ− Ω(r)t. (3.9)

Using the 2π-periodicity in φ, we therefore write

θ(r, φ, t) =
∑
n

fn(ξ, t) exp[inη]. (3.10)

Using (3.10) in (3.6), the evolution of the fn(ξ, t) is governed by

∂

∂t
fn =

1

Pe


∂2

∂ξ2
fn +

1

ξ

(
2− r2

ξ2

)
∂

∂ξ
fn

+

− n2Ω′2t2︸ ︷︷ ︸
(i)

−inΩ′′t− inΩ′
1

r
t− inΩ′

Re Pr

αr
t︸ ︷︷ ︸

(ii)

−n
2

r2

 fn

 (3.11)

where the prime denote derivatives with respect to r. Similarly to the problem of §2,
it is reasonable to assume that the coefficients fn(ξ, t) are regular in ξ for all r and
t > 0. For large enough times, t � 1, where spiral structure has formed throughout
the patch, and for all r 6 1 and |n| > 1, the dominant contribution on the right-hand
side of (3.11) comes from the term labelled (i) which implies the solution

fn(ξ, t) = fn(ξ, 0) exp
[
− 1

3
n2Ω′2Pe−1t3

]
. (3.12)

The decay of the amplitudes is now given in Lagrangian coordinates but note also that
fn(ξ, 0) = fn(r, 0) initially. The effect of contracting differential rotation is incorporated
in the term labelled (ii). It essentially leads to faster oscillations in the fn and can be
neglected for the decay at large times.

The scalar variance is computed from the amplitudes fn(ξ, t) as follows:

θ2(t) =
∑
n

∫ R̃0

r̃0

|fn(ξ, t)|2 r dr

=
∑
n

∫ R̃0

r̃0

|fn(r, 0)|2 exp
[
− 2

3
Pe−1n2Ω′2t3

]
r dr (3.13)

with integration boundaries r̃0 = (r2
0 − 2mt)1/2 and R̃0 = (1− 2mt)1/2. Assuming the

fn to be independent of r, fn(r, 0) = fn, and recalling the definition (2.13) of a critical
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radius ρ, the integral in (3.13) can be approximated by∫ R̃0

r̃0

|fn(r, 0)|2 exp[− 2
3
n2Ω′2Pe−1t3] r dr

≈ |fn|2
∫ ρ

r̃0

exp[− 2
3
n2Ω′2Pe−1t3] r dr + |fn|2 1

2
(1− 2mt− ρ2). (3.14)

Recall that the definition of ρ leads to the time range

max
[
1, r

2(Re+1)/3
0

(
Re−2Pe

)1/3
]
� t�

(
Re−2Pe

)1/3
, (3.15)

during which the approximation (3.14) is valid. Omitting constants of order unity, the
decay of the scalar variance is obtained:

θ2(0)− θ2(t) ∼ mt + (Pe−1/3 t)3(1−D′K ), (3.16)

where

D′K =
Re

Re + 1
. (3.17)

The first term on the right-hand side of (3.16) stems from the inwards flow and it
leads to a further acceleration of the variance decay. The second term scales as before
and if mt� (Pe−1/3 t)3(1−D′K ) we recover (2.19).

Summarizing, the anomalous decay

θ2(0)− θ2(t) ∼ (Pe−1/3 t)3(1−D′K ), (3.18)

is observable during the times

TS � t� min

[
r2

0 − α2

2m
,
(
m−1Pe−1+D′K

)1/(3D′K−2)

, TD

]
(3.19)

for this flow. TS and TD are defined as in (2.21), and the two other terms in the
upper time limit are given by the conditions that no scalar leaves the inner cylindrical
boundary and that the first term on the right-hand side of (3.16) is negligible. It is
important to note that D′K and the flow exponent s can be varied at will by varying
the Reynolds number Re.

4. Numerical study
4.1. Diffusion of the scalar patch

To illustrate the asymptotic results from the previous sections we now study the
evolution of a diffusing scalar in a vortex numerically. Equation (1.4) is solved
on a cylindrical coordinate frame using a conservative finite-volume formulation.
The discretization of the advective terms is based on a second-order limited high-
resolution scheme combined with an explicit one-step time integration (Nikiforakis
& Toro 1997).

The diffusive fluxes are treated as source terms, and to maintain second-order ac-
curacy in time a fractional step method is employed (Strang 1968). Periodic boundary
conditions are used in the azimuthal direction and homogeneous Neumann conditions
in the radial direction.

Our interest focuses on the diffusive properties of the advected scalar in the presence
of accumulating strong scalar gradients. The numerical dissipation introduced locally
near the gradients is essential on the one hand to damp numerical oscillations, but it
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(a) (b)

(c) (d)

Figure 6. Evolution of a scalar spiral structure in a vortex of scaling exponent s = 4. Different
periods of time are depicted. (a) The initial field. (b) Spiral structure starts to build up. (c) Spiral
structure extends throughout the field and accelerated diffusion is observed at the core. Notice that
the outer gradients are still sharply defined. The area of the inner diffused grey core grows rapidly
with time in proportion to δ(t) – see (2.38), (2.35) and (2.36). The local diffusive length scale, i.e. the
width of the scalar gradients, is given by (Pe−1t3)1/2. (d) The entire patch is diffused.

may on the other hand affect the overall physical diffusive behaviour, in particular for
the very high Péclet numbers that our asymptotic solutions require. Only numerical
validation experiments can address this concern, and a detailed comparison of the
numerically and analytically obtained transport of a single one-dimensional initial
discontinuity allowed an estimation of the resolution requirements for the accurate
prediction of the scalar variance decay over a given period of time by imposing an
empirically determined maximum cell Péclet number.

We present here the results for simulations with varying vortex scaling exponent s,
and initial conditions such as shown in figure 6(a), but with varying r0. The Péclet
number has been chosen to be Pe = 105. For an initial patch with r0 = 0.3 the
necessary grid resolution was then 800× 800 grid points in the radial and azimuthal
directions to sufficiently resolve the discontinuities. In the radial direction a smooth
hyperbolic stretching was employed to increase the resolution near the centre of the
vortex. The computational domain has a toroidal shape with the radial boundaries
quite close to the patch. However, diffusion in the radial direction towards the
boundaries was found to be very small during the times investigated here, and any
additional ‘diffusion’ due to scalar leaving the computational domain is negligible.

Figure 6 shows a typical example of the evolution of a scalar patch by depicting
instantaneous flow patterns at different times. The initial patch has been chosen to
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Figure 7. Numerical study of the diffusion of the scalar patch for different accumulation rates s.

For early times (t� 1) normal diffusive behaviour is observed with θ2(0)−θ2(t) ∼ t1/2. In the spiral

time range accelerated diffusion θ2(0)−θ2(t) ∼ t3(1−D′K ) is observed. The expected asymptotic scaling
behaviour is indicated by straight lines.
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Figure 8. Variation of the radius of the smoothed-out core ρcore in time for different accumulation
rates s. The algorithm detects initially no structure in the scalar patch and ρcore is only bounded
by the computational domain, i.e. ρcore 6 1.1. Spiral structure builds up and ρcore decreases until
it reaches its minimum which is approximately ρcore ≈ r0 = 0.3. As time advances further, this
spiral structure is destroyed by diffusion and the smoothed-out core rises sharply according to
ρcore ∼ t3/(2(s+1)). The expected asymptotic scaling behaviour in this spiral time range is indicated
with straight lines. For very large times when ρcore > R0 = 1 there is a slight change in the scaling
(acceleration of diffusion during a short period of time) which is due to edge effects at the numerical
boundaries.

fill the upper half-plane with limiting radii [r0, 1] which corresponds to the initial
conditions given exactly by (2.7).

Figure 7 shows results for different accumulation rates s. Given the numerical
restrictions in simulating the high Péclet number limit required by the asymptotic
analysis, the accelerated diffusion given by (2.19) is quite clearly seen during the
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1. Flow and geometry

Pe = 105 Re = 4 Pr = 1 λ = 0 β = 144 m = 1.4× 10−4

R1 = 0.29 R2 = 1.43 r0 = 0.36 R0 = 1 α = 0.29 σ = 0.2

2. Time limits

TS = max[1, r
2(Re+1)/3
0 (Re−2Pe)1/3] = max[1, 0.6] = 1

TD = min

[
r2

0 − α2

2m
,
(
m−1Pe−1+D′K

)1/(3D′K−2)

, (Re−2Pe)1/3

]
= min[160, 1.4× 107, 20] = 20

Table 1. Example of a flow configuration

spiral time range, TS � t � TD . For example, for s = 4 we predict TS = O(1) and
TD = O(10) in agreement with the numerical result in figure 7. The straight lines
are the asymptotic predictions for comparison with the numerical findings. Generally,
there is a slight tendency to underestimate the decay rate particularly for very early
times where theoretically θ2(0)− θ2(t) ∼ t1/2. Also, the numerical resolution does not
allow great asymptotic scale separation, particularly for small values of s, and as a
result, for small values of s the asymptotic decay is only a ‘tangent’ to the numerically
observed anomalous decay.

A much better numerical measure of this anomalous decay and the spiral time range
is the radius of the smoothed-out core. This radius we measure with an algorithm that
counts the number of gradients in the radial direction, starting from the centre, and
then averages in the azimuthal direction after having selected one particular gradient.
In figure 8 we plot the result for the third gradient found in this way. The initial value
of the radius detected by this algorithm reflects the size of the computational domain.
Spiral structure builds up and the radius measured by this algorithm decreases until it
reaches a minimum which is close to r0. As time advances further, this spiral structure
is destroyed by diffusion and the numerically measured radius of the smoothed-out
core rises sharply with a power-law dependence on time that is identical to that of
ρ(t) as given by (2.13) within a time range which compares well with the spiral time
range.

The anomalous behaviour given by (2.23) for times t � TS , that is before the
spiral time range, is independent of the spiral accumulation pattern. We expect to
observe this scaling for initial conditions with a narrow patch. Indeed, if r0 = 0.6, a
move towards this behaviour can be observed and in figure 9 we compare the results
for two patches of different sizes. For r0 = 0.3 we also observe a decay with larger
scaling exponent than 3/5 for t < TS . This behaviour can be intuitively understood
as follows: if the vortex has built fine spiral structure at the inner part of the patch
(and in this case the outer part is still unaffected, t < 1), it is again the local effect
of shear that starts to destroy the structure for the very first few spiral arms before
the accumulation of gradients is felt and diffusion acts according to (2.19). Thus, the
observed behaviour is a weak trace of the t3/2 decay which is asymptotically always
observed for a short period of time before the spiral time range.

In §3 we demonstrated that a flow with Ω(r) ∼ r−s can be realized between two
rotating porous cylinders. The validity of (3.18) has been checked numerically for
various Re = 3–5. We give here a numerical example of this flow in table 4.1, and the
corresponding numerical experiment is shown in figure 10.
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Figure 9. Two simulations in a vortex with s = 4 and different sizes of the initial scalar patch.

The larger patch (r0 = 0.3) decays anomalously with θ2(0)− θ2(t) ∼ t3(1−D′K ), and the narrow patch

(r0 = 0.6) decays according to θ2(0)− θ2(t) ∼ t3/2.
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Figure 10. The accelerated diffusion of a scalar in the flow field between two rotating
porous cylinders for the parameters of table 4.1. In the spiral time range accelerated diffusion

θ2(0)− θ2(t) ∼ t3(1−D′K ) ∼ t3/5 with D′K = Re/(Re + 1) = 4/5 is observed.

4.2. Kolmogorov capacities as a measure of the space-filling property of the spiral

The vortex of the form Ω(r) ∼ r−s implies that at some instant t when spiral structure
has formed in the scalar field, the points of discontinuity in the scalar field along a
radial axis lie on xn = (t/n)1/s with n > t. Vassilicos & Hunt (1991) showed that for
such points of discontinuity D′K = s/(s+ 1), where D′K is the Kolmogorov capacity or
box dimension of these points.

As mentioned in the Introduction, a one-dimensional field with a spiral accumu-
lating pattern can be alternatively described in terms of its high-wavenumber power
spectrum Γ (k) ∼ k−p with p = 2 − D′K . In practice, the range of scales in which
self-similarity can be observed is restricted. Vassilicos & Hunt (1991) showed that for
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Figure 11. Box counting of intersections of the scalar patch along a radial line at three different
times. As the vortex wraps the scalar patch into spiral structure, self-similar topology builds up
(t = 0.5, 4) and is then rapidly wiped out (t = 10). The vortex scaling exponent is s = 3, and
therefore D′K = 3/4.

spiral accumulations the asymptotic value of D′K is reached for a smaller self-similar
range of scales than the range of scales needed for a clear definition of the spectral
exponent p. They suggested therefore that D′K may be a more suitable measure of
self-similar geometry.

We demonstrate here that (i) the capacity D′K is well-defined and has a constant
value in the spiral time range, and that (ii) during this time range D′K is better defined
than the spectral exponent p and furthermore better defined than the dissipation
power law (2.19) for the relatively low Péclet numbers that are numerically possible.

We picked as an example one numerical experiment with s = 3 (i.e. D′K = 3/4) and
measured Kolmogorov capacities and one-dimensional spectra along a radial axis at
three instants of time. At t = 0.5 spiral structure started to build up at the centre of
the vortex; at t = 4 the spiral expanded throughout the field; and at t = 10 most
of the scalar was diffused. Because diffusion smooths out the initial discontinuity in
the scalar field we chose thresholding to artificially restore the on–off discontinuities.
The threshold value 0.5 (θ0 = {0; 1}) seemed to be the most sensible choice. For the
spectra we additionally used running averages over a fifth of a decade to smooth the
data.

In figure 11 we show the results of box counting on the scalar interface. As spiral
structure builds up (t = 0.5, 4), a D′K > 0 is observable and the range of length scales
in which D′K > 0 increases in time because finer and finer structure is created. At
t = 10 diffusion has destroyed the spiral structure and as a consequence D′K = 0 for
all scales. These numerical results support our assumption that D′K is independent of
time within the spiral time range, an assumption that appears reasonable given the
fact that we indeed find D′K = s/(s+ 1) for selected times in this range.

The spectra show a much weaker signature of the singularity. Isolated discontinu-
ities result in a spectrum Γ (k) ∼ k−2 and this spectral slope is well observed in all
three instants of time, figure 12. At t = 4 we observe a small range of scales in which
Γ (k) ∼ k−2+D′K but we should add that the clarity of this range depends highly on
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Figure 12. The scalar spectra of the line intersections used in figure 11. The signature of the
accumulating topology, Γ (k) ∼ k−2+D′K = k−5/4, is only visible for t = 4.

the choice of running averages. Also, when using the original scalar field (without
thresholding) no signature of the singularity is observed at all in the power spectrum.

To estimate D′K from the box-counting results shown in figure 11, we compute

D′K(l) = −
ln
[
N(l)/N(lmin)

]
ln
[
l/lmin

] (4.1)

where l is the size of the covering boxes and N(l) is the number of boxes needed to
cover the interface. lmin is an inner scale which is determined by the requirement that
the variance of the function D′K(l) be minimal; that is we minimize

1

lmax − lmin

∫ lmax

lmin

(
D′K(l)− D′K

)2

dl (4.2)

where

D′K =
1

lmax − lmin

∫ lmax

lmin

D′K(l)dl (4.3)

by varying lmin in a sub-range of (0, lmax]. The outer scale lmax is fixed and set as
lmax = R0/2. We set D′K(l) = 0 for all l 6 lmin.

In figure 13 it is shown that this procedure allows D′K to be estimated surprisingly
accurately even for t = 0.5. The essential difference between the times t = 0.5 and
t = 4 is the range over which D′K is well-defined, the value itself is approximately
constant and agrees well with the expectation D′K = 3/4. Such estimates cannot be
deduced from the scalar spectra. More importantly, the anomalous decay found in the
numerical experiments (figure 7) allows no conclusions about the asymptotic scalar
variance decay to be made because the signature is too weak for a well-defined power
law in the spiral time range. However, the Kolmogorov capacity can be measured and
through it (but not directly!) the prediction of the asymptotic scalar variance decay
is indeed possible, even when the resolution is insufficient for the dissipation to be
well-defined. Furthermore, we should also note that D′K can easily be obtained from
visualization even when the parameter s of the underlying vortex field is unknown.
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Figure 13. The result of estimating the Kolmogorov capacity using (4.1). The reference scale lmin in
(4.1) is obtained from a minimizing procedure and is found to be lmin = 0.1, 0.21 for t = 0.5, 4.

5. Conclusions
This study was motivated by the observation that the presence of singularities in

scalar fields enhances the diffusive decay of the scalar. By analysing one particular
flow configuration where a spiral singularity in the scalar field is dynamically formed,
it was demonstrated that the scalar dissipation is accelerated and the main result
of this study is (2.19) where the accelerated diffusion is linked to the space-filling
property of the spiral scalar structure.

A detailed discussion on characteristic length scales in this flow brought out the
global effect of the space-filling property of the spiral accumulation of scalar gradients
as opposed to the local effect that the local shear of the vortex has on the scalar
patch.

In the study of turbulent flow the scalar dissipation rate is often assumed to be
asymptotically independent of molecular diffusivity as mentioned in the Introduction.
Here we study a specific example of a vortex flow differentially wrapping scalar
around it to form a spiral structure for which

χ = − d

dt
θ2(t) ∼ κ3(1−D′K )t2−3D′K (5.1)

at leading order. This implies that if D′K → 1, the dissipation χ is asymptotically
independent of κ in the limit where κ→ 0, i.e. limκ→0 limD′K→1 χ is a non-zero constant
and independent of κ (note that these limits do not commute).

However, turbulence is perhaps not the only candidate for an application of this
work; applications are to be expected wherever isolated vortices dominate the mixing
properties of passive tracers like for example in atmospheric vortices which often form
well-defined spiral tracer structures. The flow between rotating porous cylinders with
radial suction was one particular example where we could show that the space-filling
property of the scalar field which, as we show, is directly linked to the radial flow rate,
accelerates scalar dissipation in a configuration that may be suitable for laboratory
experiments.

A suitable measure of the space-filling property is the Kolmogorov capacity D′K .
When compared with the vortex scaling exponent s it is much easier to measure
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(and visually more intuitive as it reflects the accumulating pattern of the spiral).
More importantly, its value is constant over a range of times and can be accurately
determined even when the resolution is too low to detect the corresponding asymptotic
scaling law for the dissipation rate.

We gratefully acknowledge financial support from the Royal Society, the EPSRC
(grant no. GR/K50320), the EU (contract no. ERBCHBGCT940523) and the Gottlieb
Daimler- und Karl Benz-Stiftung.

Appendix. Early time asymptotics
Following the discussion in §2.2, we consider times rs0 � t� 1, where only the inner

part of the patch has developed spiral structure. In this time range we can distinguish
between r < t1/s, the inner part of the patch which has developed spiral structure,
and r > t1/s, the outer, unaffected part of the patch. To determine the dominant
contributions in (2.9), the dependence on r and t is given by orders of magnitude:

∂

∂t
fn =

1

Pe

{
∂2

∂r2
fnO(1) +

∂

∂r
fn
[
O(tr−(s+1)) + O(r−1)

]
+fn

O(t2r−2(s+1))︸ ︷︷ ︸
(i)

+O(tr−(s+2)) + O(r−2)︸ ︷︷ ︸
(ii)

 . (A 1)

With t < 1 and r < t1/s the dominant contribution is term (i) as before. With t < 1
and r > t1/s the dominant contribution comes from the term (ii), and (2.10) becomes

dfn
dt

= −Pe−1
(n
r

)2

fn (A 2)

with the solution

fn(r, t) = fn(r, 0) exp

[
−
(n
r

)2

Pe−1t

]
. (A 3)

This result is not surprising: the spiral part of the patch is subjected to accelerated
diffusion, whereas the outer part decays according to ‘classical’ diffusion. Therefore,
the overall decay can be written as

θ2(0)− θ2(t) '
(

Pe−1/3t
)3(1−D′K )

+
(
Pe−1t

)1/2
. (A 4)

The first term on the right-hand side of (A 4) is dominant if spiral structure is built
and destroyed faster than can be destroyed by classical diffusion, (Pe−1/3t)3(1−D′K ) �
(Pe−1t)1/2. That is, anomalous decay can be observed for all t > Pe(1−2D′K )/(5−6D′K ) = T ∗S .
Indeed T ∗S < 1 for 1/2 < D′K < 5/6, and T ∗S < TS for large Péclet numbers, that is,
anomalous decay can indeed be observed for t > TS even if TS < 1. For D′K > 5/6
the spiral structure grows too slowly for anomalous decay to be observable for t < 1.
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